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A numerical description of heterogeneous propellant combustion enables us to
examine the spatial and temporal fluctuations in the flow field arising from the
heterogeneity. Particular focus is placed on the fluctuations in a zone intermediate
between the combustion field (where reaction is important) and the chamber flow
domain, for these define boundary conditions for simulations of the turbulent chamber
flow. The statistics of the temperature field and the normal velocity field are described,
and characteristic length scales and time scales are identified. The length scales are
small compared to any relevant length scale of the chamber flow, and so the boundary
conditions for this flow at any mesh point are statistically independent of those at
any other mesh point. But the temporal correlations at a fixed point are significant,
and affect the nature of the chamber flow in a variety of ways. We describe the
fluctuations in the head-end pressure that arise because of them, and contrast these
results with those calculated using a white-noise assumption.

1. Introduction
Consider the numerical simulation of a rocket-motor chamber flow. This is a

problem whose solution is important in rocket design, and in the study of safety
scenarios. It is also a difficult problem, a challenge to the most advanced computing
resources of the day. For example, at the Center for Simulation of Advanced Rockets
(CSAR) at the University of Illinois‡ a code has been constructed to simulate the
flow in the solid-propellant boosters of the Space Shuttle (Fiedler et al. 2005; Fiedler,
Wasisto & Brandyberry 2006) and, running on the US Department of Energy’s most
powerful computers, only 600 milliseconds or so of physical time can be simulated.
Short though this is, however, particularly in comparison with the 2 minute burn-out
time of the boosters, ignition transients and certain accident scenarios can be studied.
Calculations for longer time periods can be carried out for rockets that are much
smaller than the boosters.

The code accommodates turbulence using large-eddy simulations (Wasisto,
Balachandar & Moser 2004; Wasisto & Moser 2005). Here a new challenge, not
present in traditional scenarios, is a proper accounting of the nature of the injected
flow at the chamber/propellant boundary. Particularly for heterogeneous propellants,
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this flow and the vorticity it carries is neither steady nor spatially uniform. These
fluctuations could well have an effect on the overall chamber flow and, indeed, there is
a significant amount of experimental and computational work that demonstrates the
effect of perturbations of initial or boundary conditions on the long-time or far-field
solution of turbulent flow fields (Moser, Rogers & Ewing 1998). Also, of particular
interest in rocket flows is the interaction between the omnipresent acoustic waves and
fluctuations of the injected flow, and a number of studies have shown how important
this can be for certain parameter values (Zhao et al. 2000; Flandro 1986). (It is worth
noting, for the reader unfamiliar with solid-propellant rockets, that because of the
large efflux velocities there is no boundary layer above the burning propellant. These
flows – interior flows generated by wall injection – are of the kind first studied by
Taylor (1956). See also Proudman (1962), Culick (1966), Balachandar, Buckmaster &
Short (2001). Inviscid flows of this kind are rotational and satisfy the no-slip condition
at the injection surface without benefit of viscosity. The large-eddy simulations of
compressible rocket flow reported in Wasisto et al. (2004) yield solutions with means
that agree well with the compressible version of Taylor flow reported in Balakrishnan,
Linan & Williams 1991.)

For these reasons alone, notwithstanding the significance of any findings, it is of
interest to describe the nature of the flow field at an intermediate distance above the
propellant surface, intermediate in the sense that the distance is large compared to the
scale of the flame structure, but small compared to appropriately defined flow scales.
In order to do this it is necessary to have a code that can simulate heterogeneous
propellant combustion, and in recent years such a code has been developed and
refined as part of the Space Shuttle study (Jackson & Buckmaster 2002; Massa et al.
2002; Massa, Jackson & Buckmaster 2005. It has a number of ingredients.

The propellant itself, typically restricted to ammonium perchlorate (AP) in binder,
is modelled by representing the AP particles by spheres. The sizes of the spheres can
be chosen to match the size distribution of industrial packs (Kochevets et al. 2001).
Within the propellant, heat conduction is accounted for, with different conductivities
for the two components. AP particles that are too small to be resolved numerically
are accounted for using a homogenization strategy (Chen et al. 2002).

The processes occurring in the neighbourhood of the propellant surface – melting,
heterogeneous reaction, etc. – are accounted for using simple pyrolysis laws relating the
surface regression rate to the surface temperature. Different parameters are required
for the different components, and here also a homogenization strategy is used to
accommodate the smallest AP particles (Chen et al. 2002).

When aluminum is not present, the surface can be represented by a single-valued
function provided that it has no unusual topographical features, such as cracks. Then
its evolution is governed by a simple first-order equation of the Hamilton–Jacobi type.

Finally, in the gas phase, the variable-density low-Mach-number reactive Navier–
Stokes equations are solved. Either a two-step kinetics model is used, or a three-step
model. Each step of the latter corresponds to a single flame of the familiar Beckstead–
Derr–Price model of heterogeneous propellant combustion (Beckstead, Derr & Price
1970).

Validation of the overall code is discussed in Massa et al. (2005), and its application
to the acoustic response of burning propellant is reported in Buckmaster et al. (2005).
In this past work it has not been necessary to integrate away from the surface more
than a few hundred microns, since the burning rate is not affected by the flow beyond
that zone. Here it is necessary to examine the combustion field on the millimetre
scale.



Fluctuations above a burning heterogeneous propellant 3

Number of
SpheresDiameter

567.450 1
520.350 12
477.150 24
437.550 74
401.250 213
367.950 465
337.400 935
309.400 1450
283.700 2111
260.650 2917
239.050 3717
218.750 4641
200.600 5126
183.950 5748
168.700 6159
154.700 6027
141.850 5907
130.100 5675
119.300 5440
109.400 5030
100.330 4941
91.980 4701
84.350 4584
77.350 4727
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59.645 5330

475654.695

y

x

z = 0
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 1. A slice through a typical pack generated by the packing code. The packs are
periodic in all three directions. Colour scale denotes scaled particle size.

The structure of the paper is as follows. In § 2 we briefly describe the coupled
combustion code on which the present work is built, and the evidence we have that it
reflects reality to some degree. In § 3 we describe the various propellant morphologies
for which the calculations are carried out. The gas-phase fluctuations generated by
the combustion of these propellants evolve as distance from the surface increases, and
this evolution is described in § 4. Section 5 is concerned with the fluctuation statistics,
and the associated length scales and time scales. And § 6 describes the chamber flow
analysis.

2. The coupled combustion code
The combustion code simulating the gas-phase combustion field and the heat con-

duction within the solid propellant, coupled via the regressing propellant surface, is
described in Jackson & Buckmaster (2002) (two dimensions) and Massa et al. (2002,
2005) (three dimensions). Details of the numerical strategies, along with verification
studies, are reported in Massa, Jackson & Short (2003). Readers interested in the
issue of parameter choices should refer to Massa et al. (2002, 2005); those interested
in experimental validation, Massa et al. (2005); those in verification, Massa et al.
(2003). Here we briefly describe the equations and the numerical strategies adopted
to ensure accuracy.

A key ingredient is a model of the propellant morphology, one that is generated
using a sphere-packing code (Kochevets et al. 2001; Knott, Jackson & Buckmaster
2001), and a slice through a typical model pack is shown in figure 1.
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(a) (b)

Figure 2. Photomicrographs of a laboratory bimodal pack (courtesy of Q. Brewster):
(a) particles of order 200 microns in diameter, (b) of order 2 microns.

It is typical of industrial packs that the AP particles range in size from ∼1 µm
to ∼100 µm.; figure 2 shows two photomicrographs of a laboratory pack with this
characteristic. Note that real AP particles are not spheres, but we have reason to
believe, from a study of spheroid packs (Wang, Jackson & Buckmaster 2007b), that
this is of no concern provided the particle distribution is statistically isotropic.

It is unrealistic to expect that the combustion code can both resolve the ∼1 µm
particles and, at the same time, accommodate the ∼100 µm particles. And a significant
volume fraction of AP could be unresolvable thereby, and its role cannot be neglected.
For this reason we have developed homogenization strategies in which the finest AP
particles are blended with the fuel binder and the required properties of this blend
are calculated (Chen et al. 2002).

Heat conduction within the solid is governed by

ρscs

∂T

∂t
= ∇ · (λs∇T ) (1)

where T is the temperature, ρs is the density, cs the specific heat, and λs the conduc-
tivity. ρs and λs are assigned different values according to whether they are located
in pure AP or in AP/binder blend. The discontinuity in λs at the particle boundaries
implies that the temperature gradient is discontinuous there, and so a well-established
but non-classical finite-difference strategy is adopted, Massa et al. (2002). This was
tested on one-dimensional problems with analytical solutions. Because the multi-scale
aspects of the problem are eliminated by the homogenization strategy, a uniform
mesh suffices provided it is fine enough to accommodate the smallest particles that
are not homogenized. The solution of test problems with Dirichlet data at the top
and bottom boundaries, and periodicity conditions at the side boundaries, shows that
at least 10 mesh points are required across a particle diameter.

The propellant surface moves in a highly irregular unsteady fashion, and it is
convenient to fix it in the computational frame. This is possible provided it can be
described by the single-valued function f :

η = f (ξ, ζ, t) (2)
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where η is measured normal to the surface (nominally), and ξ, ζ parallel to the surface
(nominally). Then, in the field equations η can be replaced by y = η − f , the height
above or below the surface, fixed at y = 0. If the normal regression speed of the
surface is rb, f satisfies the equation

ft +
√

1 + f 2
ξ + f 2

ζ = 0 (3)

and this is solved using a WENO scheme; rb is related to the surface temperature by
a simple pyrolysis law

rb = A exp(−B/T ) (4)

where A and B take on different values in the two different materials. The pyrolysis
law, commonly used, subsumes complex and poorly understood physics that occurs
at and just below the surface.

A method of testing the accuracy of the WENO scheme, which we used, is to choose
a function f and add a forcing term to the right-hand side of (3) so that the choice
is a solution of the modified equation. An approximation to f is then generated by
integration, for comparison with the exact function.

The mapping function defined here which defines y, a computational variable,
is the simplest choice using f and is adopted in all of our earlier work. A slight
modification, to be described later, is used in the present work.

The gas-phase combustion field is described by the incompressible (but variable-
density) Navier–Stokes equations (momentum and mass conservation), the small-
Mach-number energy (temperature) equation, and equations for the reactants. The
latter have the form

ρc
DT

Dt
= ∇ · (λ∇T ) + q, ρ

DYi

Dt
= ∇ · (ρDi∇Yi) − αi, (5)

where q is the heat generated by the reactions (each an Arrhenius function of T ) and
αi is the rate at which the reactant Yi is consumed by the reactions. Di is the diffusion
coefficient.

A detailed discussion of the numerical strategies used for the integrated problem
(solid, interface, gas) can be found in Massa et al. (2003), together with algorithm
verifications and accuracy tests. Overall, the accuracy is second-order both in time
and space. Application of the code, with a discussion of the parameter choices, is
described in Jackson & Buckmaster (2002) and Massa et al. (2002, 2005).

The computational challenges of this problem, which should always be borne in
mind, preclude accommodation of real chemical kinetics. Rather, we use global
kinetics with either 2 or 3 steps. The 3-step model comprises: an AP decomposition
flame; the so-called primary diffusion flame in which AP pyrolysis gases react with
binder pyrolysis gases; and the so-called secondary diffusion flame in which the
products of the AP decomposition react with binder pyrolysis gases. For the 2-step
model the primary diffusion flame is neglected.

The choice of parameters, of which there is a large number, presents a serious
challenge. For some, the experimental examination of subcomponents of the problem
has yielded data of varying reliability. This is true, for example, for the pyrolysis rate
parameters and those that define the energetic consequences of the pyrolysis.

As creatures of false kinetics, the kinetics parameters cannot be determined by a
chemist’s wizardry, but can only be deduced from burning-rate measurements and
related measurements such as those of the sensitivity of the burning rate to the
propellant supply temperature. The danger here is that the whole endeavour will
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Figure 3. Burning rates for various Miller packs: experimental (joined circles) and numerical
(squares: 2-step kinetics; asterisks: 3-step kinetics). The dashed line is the burning rate of pure
AP.

degenerate to one of elaborate curve-fitting, of limited value. For this reason we have
been particularly careful to avoid the use of three-dimensional burning-rate data,
and have used only one-dimensional data, the burning rates of pure AP or of fine
AP/binder blends. Then predictions of three-dimensional burning-rate variations with
propellant morphology can be used for validation.

Unfortunately, few data are available for such purposes; indeed, all that we are
aware of are reported in Miller (1982). There, Miller describes the statistics for a
number of packs, together with their burning rates over a range of pressures. Figure 3
shows comparisons between these data and the numerical predictions for four such
packs; the numerical results are calculated using either the 2-step or the 3-step
chemistry model. Note that at the highest pressure the measured burning rate for
M03 is approximately 6 cm s−1, and for M24 it is a little under 2 cm s−1: There are
significant morphology effects.

An examination of the results for M03 shows excellent agreement when 3-step
kinetics is used, except for P = 34 atm. This is a pack for which a substantial amount
of homogenization of fine AP is required, and at P = 34 atm the one-dimensional
blend displays a pulsating instability. Such instabilities are not surprising, but the
conditions for which they occur are controlled by the choice of kinetics parameters,
and there is no reason to believe that they coincide with the experimental ones. Thus
the discrepancy noted here merely draws attention to the fact that the strategy used
in Massa et al. (2005) to fit the kinetics parameters should be modified to incorporate
stability criteria. Efforts are under way to accomplish this.
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Particle distribution Particle Dmax Dmin Lx = Lz grid
Name cuts number (µm) (µm) αV : αH (mm) nx × nz × ny

H200
200 µm
100 %

8 × 103 200 200 62:0 3.78 180 × 180 × 67

Th200
Th200
100 %

1 × 104 458 50 64:41 3.247 191 × 191 × 67

P82
P82

100 %
3 × 104 89 75 61:46 2.22 191 × 191 × 67

P82 390
P 82 P390
20% 80%

3 × 104 401 72 69:0 3.8 191 × 191 × 67

Th20 50 200
Th20 Th50 Th200
16% 48 % 36%

2 × 104 404 40 70:0 1.93 151 × 151 × 67

Table 1. Summary of the propellant morphologies. In the sixth column, αV is the volumetric
fraction (percent) of oxidizer spheres in the pack, while αH is the volumetric fraction of
binder that is actually oxidizer (homogenization). The total volume fraction of oxidizer is
αT = αV (1 − αH ) + αH . In the seventh column, L is the side of the x, z sections of the pack.
In the eighth column, the same grid is used in both solid and gas phase; the value reported
refers to one phase only.

For M17, both the 2-step and the 3-step model yield excellent agreement; for M24,
as for M03, the 2-step model is inadequate, but the 3-step model works well; and for
M21 it would appear that neither model is satisfactory. However, there is reason to
question the experimental data for M21. Each panel in figure 3 shows a dashed line
that defines pure AP burning rates, and we see that for M03, M17, and M21 these
rates lie below those of the heterogeneous propellant. Moreover, there are indications
that the rates converge at high pressures for M17 and M24 (particularly for the latter)
and it has long been argued that this is a universal expectation. On the other hand,
for M21 the measured heterogeneous rates drop below the AP rates at high pressures.
For this reason, and in the absence of confirmation of the M21 data, we report this
discrepancy but are little concerned by it.

To conclude. The problem is a complex one that cannot be dealt with by rational ap-
proximations to exact ingredients; rather, a significant number of component models
must be adopted, many of which can be legitimately criticized. But the successful
comparisons of figure 3 provide some support to the idea that the code can be
usefully applied to scientific issues of propellant combustion that go deeper than the
mere calculation of burning rates. The acoustics study of Buckmaster et al. (2005) is
an example; the calculation of far-field perturbations that we present here is another.

3. The propellant morphology used in calculating the fluctuations
The object of this paper is to learn something of the nature of the fluctuations

in the flow field generated by the combustion of a heterogeneous propellant. Such
fluctuations will be strongly influenced by the propellant morphology, and we shall
consider five different morphologies, some of the fundamental parameters of which
are shown in table 1. Here, in the names in the first column, ‘P’ marks a pack
that represents a morphology studied by Sambamurthi, Price & Sigman (1984), and
‘Th’ marks a pack that represents a morphology studied at ATK Advanced Launch
Systems (formerly ATK Thiokol Corporation).
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Figure 4. Particle size distribution for the five packs described in table 1.

H200 is a monomodal pack, one in which all of the particles have the same diameter.
Eight thousand particles are packed in a cube of side 3.5 mm. The packing fraction
αV , the percentage of cube volume occupied by the spheres, is 62 %, and there is
no oxidizer homogenized into the binder, so that αH is zero. In general, the ‘binder’,
the volume of the cube external to the spheres, is a blend of fuel and homogenized
oxidizer.

Th200 is a Thiokol distribution in which the spheres range in diameter from 50 µm
to 458 µm, and 41 % of the binder is oxidizer, so that with 64 % of the total volume
occupied by spheres, 78.76 % of the total volume is oxidizer. The size distribution is
shown in figure 4.

The data for P82 can be understood in the same way as those for Th200. And
P82 390 is simply a combination of two distributions, P82 and P390, in the proportion
of 20 to 80. Similarly, Th20 50 200 is a combination of three distributions. Slices
through the various packs are shown in figure 5; note that they are not drawn to
scale.

It is, we believe, of interest to compare the solutions for H200 (mono-modal)
with those of Th200 (a single distribution with particles of similar mean size). And
comparing Th200 with P82 gives an indication of the effects of mean size for single
distributions. The packs P82 390 and Th20 50 200 are characterized by multiple
distributions more characteristic of those used in practice.

4. The fluctuations and their evolution
The issue of fluctuations (both spatial and temporal) in the burning of a hetero-

geneous propellant, and their relationship to the fluctuations in the chamber flow, is a
complicated one. Fluctuations arising from the heterogeneity occur at the propellant
surface and evolve as they are convected away from the surface. That they are
non-trivial is suggested by recent photographs taken at China Lake, figure 6. It is
natural to ask if they eventually influence the turbulent chamber flow, and this is a
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Figure 5. x, z sections of the five packs described in table 1 (not to scale).

question that can be addressed using the combustion code described in § 2, together
with chamber-flow simulations. At the same time, it has long been understood that
near-wall velocity fluctuations (turbulent eddies) can penetrate the combustion field
and affect the burning rate, leading to what is known as erosive burning, Landsbaum
(2005), although the precise nature of erosive burning has never been adequately
described. Also, in cases where the local Mach number of the flow is not small, local
pressure fluctuations associated with the velocity fluctuations could be large enough
to affect local burning rates; local Mach numbers are not small near the nozzle end
of large rockets. And temporal fluctuations of the mean chamber pressure can affect
the mean burning rate throughout the chamber.

The simulation of this fully coupled problem is not something that we yet know
how to do. Indeed, the problem of erosive burning by itself is of this nature. Instead,
we ignore all effects of chamber fluctuations on the burning rate. In this connection
it is worth noting that erosive burning is unimportant if the chamber flow velocity
is not large, as near the fore end of the chamber, or for a small rocket. But as with
any complex two-way coupled problem, legitimate scientific enquiry includes the
analysis of each one-way component. It could be the case, for example, that all
fluctuations associated with the heterogeneity occur on length and time scales that
have no influence on the chamber flow – that for purposes of calculating the chamber
flow the efflux from the propellant can be treated as locally homogeneous in both
space and time. In due course we shall see that this is not the case.

An additional assumption that is made is that the efflux random field (as seen by
the chamber flow) can be modelled as a covariance stationary normal process. This
simplifies the task of determining the joint probability density function of the process
by expressing it as a function of the mean of the marginal distributions and the
covariance matrix. This is an issue that is discussed later.

The fluctuations are described in surfaces that are nominally parallel to the
propellant surface, and these surfaces are as follows. The physical coordinate system,
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tied to the propellant interior, is (ξ, η, ζ ), and the computational coordinate system,
tied to the propellant surface, is (x, y, z). The surface is represented by a single-valued
function† via the formula η = f (ξ, ζ ) and the relationship between the two coordinate
systems is via the formulae

ξ = x,

ζ = z,

y = η − max[f (x, z)] − γ (y){f (x, z) − max[f (x, z)]},

⎫⎬
⎭ (6)

where γ (y) is a continuously differentiable function that is 1 for y =0, 0 for
y � 0.5 mm. Therefore, y = 0 defines the propellant surface, and the computational
surfaces y =C|C � 0.5 mm are planes for which the distance from the most elevated
point of the surface is C. Our particular choice for γ is

γ = 1 − 3(y/y0)
2 + 2(y/y0)

3, y � y0,

γ = 0, y > y0,

y0 = 0.5 mm.

⎫⎬
⎭ (7)

Note that y defined here is slightly different from the earlier definition in § 2.
The natural time scale for the solid physics is much longer than that for the gas

physics, and we are only concerned with a quasi-steady gas phase for which temporal
changes only occur because of temporal changes at the propellant surface. We pick
a single instance of time and describe the flow field at different distances from the
surface. The fluctuations that are seen at any plane originate at the surface but evolve
with distance from the surface because of mixing and chemical reaction. At the
surface there are fluctuations in temperature, mass flux, and reactant concentration.
The first two are intimately related via the pyrolysis laws, but even if the surface
temperature were uniform the mass flux would not be, because of the heterogeneity
of the surface. The gas-phase reactions are affected by the surface temperature (the
supply temperature of the reactants), and by the reactant fluxes, and the spatially
non-uniform heat released by the reactions has a large affect on the gas temperature,
the density, and the velocity field.

The chemical heat release, conducted against the flow to the surface, also strongly
affects the surface temperature, and a large portion of the heat flux to the surface
is generated by the leading edge of the diffusion flame supported by the mixing of
oxidizer flow and binder flow. Because of this, regions on the surface close to a fuel–
oxidizer interface have larger surface temperatures than elsewhere. Consequently, it
is in these regions that the mass flux leaving the surface is greatest, as demonstrated
in figure 7. The four panels of figure 7 show the normal velocity, the temperature, the
oxidizer/fuel composition and the corrugation at the surface of P82 390 at a single
time. Looking at the velocity panel, the regions of bright red are located at the interface
between oxidizer and binder, the yellow-green regions are located on the oxidizer
particles, which support the monopropellant decomposition flame, and the dark
blue regions are located on pure binder which does not support a flame.

4.1. Edge of the combustion layer

The length scale of the velocity fluctuations shown in figure 7 appears to be directly
defined by the scale of the oxidizer particles. It is clearly of interest to examine

† For aluminized propellants, not discussed here, such a representation is not possible and a
level-set strategy must be adopted, see Wang & Jackson (2005), Wang et al. (2007a).
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Figure 6. Jet like structures photographed above a burning propellant, courtesy
Alice Atwood, China Lake.
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Figure 8. Velocity divergence (m s−1) for the P82 390 pack for different values of y (cm).

how this changes as one moves away from the surface, particularly to the region
intermediate between the combustion field and the chamber flow field.

The outer edge of the combustion field can be identified as where the chemical-
kinetics terms are no longer important to the development of the fluctuations. When
all the chemical reactions are exhausted, the perturbations are merely convected and
damped by the diffusive flow, physics governed by the Navier–Stokes equations for a
non-reacting mixture. Kinetics terms affect the mechanical part of the equations by
modifying the continuity equation, so that the divergence of the velocity is large and
positive. For the bimodal pack P82 390 in table 1, this divergence is shown in figure 8.
Each of the following pairs of numbers lists y in microns followed by representative
values of the divergence: (0,100), (48, 10), (119, 3), (299, +1 to −1), (645, +0.2 to
−0.2), (1500, +0.1 to −0.1). Note that there are small patches of negative divergence
for y =119 µm, and significant regions for y = 299 µm so that, roughly speaking,
chemistry is unimportant in this sense beyond 200 µm. In the following discussion we
shall choose y = 500 µm as the plane representative of the intermediate region: half a
millimetre is firmly outside the combustion field, but shy of the chamber flow because
of the latter’s large scale.

The spatial evolution of the velocity fluctuations is illustrated in figure 9, which
shows a number of horizontal slices through the flow field. It is apparent that at
1.5 mm from the surface there are four jets of flow with maximum speeds in the
neighbourhood of 450 cm s−1. These four structures are apparent at 299 µm, but have
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Figure 9. Normal velocity (cm s−1) on x, z slices for the P82 390 pack for different
values of y (cm).

been significantly smoothed out at the larger distance. It is useful to examine the
slower portions of the flow field (blue) rather than the faster portions, because then
the pattern clearly visible at 1.5 mm is apparent at 61.8 µm. Moreover, turning back
to the first panel of figure 7, its genesis can be seen in the surface distribution. In
other words the width of the jets, 1.5 mm or so, has its roots in the clustering of the
oxidizer particles at the surface.

Figure 10 shows the temperature fluctuations. There are four hot spots at large
values of y, roughly matching the four velocity jets, but here also the pattern is best
seen by looking at the low values, the five blue regions. This pattern also can be seen
close to the surface, not because the far-field termperature is controlled by the surface
temperature, but because it is controlled by the reactant fluxes, and these are linked
to the surface velocity.

It is noteworthy in both figure 9 and figure 10 how non-uniform the fields are, how
much they differ from a one-dimensional description of the kind that would be gener-
ated by a QSHOD (quasi-steady, homogeneous, one-dimensional) strategy (Brewster
2000). Thus at y = 0.474 mm the mean velocity is 375 cm s−1, the standard deviation
is 56 cm s−1, and the difference between the minimum and maximum velocities is
370 cm s−1. For the temperature, the mean is 2770 K, the standard deviation is 158 K,
and the difference between the minimum and maximum values is 772 K. These
variations have not been calculated before.
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Figure 10. Temperature (K) on x, z slices for the P82 390 pack for different values of y (cm).

Figure 11 and figure 12 show vertical cuts through the combustion field, and include
part of the propellant pack. These figures show the merging of the hot fast-moving
regions as the distance from the surface increases.

5. Fluctuation statistics
In the previous section we gained some insight into the nature of the fluctuations

above the propellant surface, particularly in the intermediate region at the edge of
the combustion layer. These originate in the heterogeneity of the propellant, and not
through any influence of fluctuations in the chamber flow on the combustion field; as
noted in § 4 we describe the nature of the perturbations generated by the heterogeneity
and their impact on fluctuations in the chamber flow, but not the reverse.

The efflux from the burning surface is a random vector field with four components:
the normal velocity (v), the temperature (T ), and the two tangential velocity com-
ponents. This field is statistically homogeneous in the x- and z-directions, but not in the
y-(normal) direction, and so the marginal probability density functions (p.d.f.s) depend
only on y. These functions are plotted for several values of y in figure 13, figure 14, and
figure 15. The tangential velocities are small at around 0.5 mm, and so are neglected
in the chamber flow analysis discussed in § 6; henceforth, we shall only discuss v and
T . Then the description of the stochastic process is based upon the definition of a
vector Y containing the time–space sequence of the inflow random variables {vm

n , T m
n }

evaluated at time steps n= 1, . . . , N , and all the coherently correlated spatial locations
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Figure 13. Probability density function for the normal velocity at four values of y: dotted
line, Th20 50 200; dashed line, H200; solid line, P82; dash/dot line, P82 390; circles, Th200.
(a) y = 0, (b) y = 0.05237 cm, (c) y = 0.1019 cm, (d) y = 0.15 cm.
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Figure 14. Probability density function for the temperature at four values of y: dotted line=
Th20 50 200; dashed line= H200; solid line= P82; dash/dot line=P82 390; circles= Th200.
(a) y = 0, (b) y = 0.05237 cm, (c) y = 0.1019 cm, (d) y = 0.15 cm.

m =1, . . . , M . The associated covariance matrix is

K := E[(Y − E[Y ])(Y − E[Y ])T], (8)

where E[ ] represents the expected value or mean, and the superscript T indicates the
matrix transpose.



Fluctuations above a burning heterogeneous propellant 17

–200 –100 0 100 200
0

2

4

6

8

10

(× 10–3)

D
en

si
ty

 f
un

ct
io

n

(a)

–50 0 50
0

0.01

0.02

0.03

0.04

0.05 (b)

Figure 15. Probability density function for the tangential velocity components at two values
of y for P82 390. Dashed line with × marks: U component; solid line with square marks: W
component. (a) y = 0, (b) y =0.05237 cm.

Variable Th20 50 200 H200 P82 P82 390 Th200

Velocity µ 4.66 3.35 5.81 3.67 4.97
Velocity σ 0.40 0.48 0.17 0.54 0.53
Velocity ζ 6.8 × 10−2 5.1 × 10−2 1.9 × 10−1 5.2 × 10−2 1.7 × 10−1

Velocity τ −0.2586 −0.0583 −0.6930 −0.1203 −0.6186
Temperature µ 2755 2572 2962 2756 2888
Temperature σ 89 113 27 152 109
Temperature ζ 5 × 10−2 3.8 × 10−2 4.3 × 10−1 2.8 × 10−1 5.7 × 10−1

Temperature τ 0.0480 0.055 −2.0936 −0.6836 −1.8257

Table 2. Mean, µ, standard deviation, σ , deviation from a normal distribution, ζ , and scaled
third-order moment, τ , for temperature and normal velocity. The temperature is in K, the
velocity in m s−1.

Returning to figures 13 and 14, the p.d.f.s. change significantly from the surface,
panel (a), to the location at 0.5 mm, panel (b). Variations above 0.5 mm are caused by
diffusion, and this damps out the fluctuating part. The change between the fluctuation
statistics at the surface and at 0.5 mm is large compared with the change over the
interval [0.5, 1.5] mm. This observation supports the idea that thermal expansion and
chemical reactions are important in defining the statistics of the fluctuations at the
edge of the combustion sublayer.

The p.d.f.s are, approximately, normally distributed for values of y greater than
0.5 mm. Values for the first and second fluctuation moments about the mean for the
0.5 mm planar cut are listed in table 2. There, ζ is a parameter that quantifies the
difference between a p.d.f. Γ (x) and the approximating normal density function with
equal first and second moments:

ζ =

∫ +∞

−∞
dx

∣∣∣∣∣Γ (x) −
exp

(
− 1

2
((x − µ)/σ )2

)
σ

√
2π

∣∣∣∣∣ . (9)

In addition, the variable τ =µIII /σ 3 in table 2 quantifies the skewness of the distribu-
tion where µIII is the third-order moment about the mean; for a symmetric distribu-
tion, τ = 0.

In general we note that the hypothesis of normal density is satisfied for the velocity
better than for the temperature. For the velocity, the two packs with multi-modal
distributions (P82 390, Th20 50 200) yield marginal densities that are the closest to
normal distributions. P82 390 yields the smallest τ . For the temperature, Th20 50 200
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yields a distribution which is the closest to normal. Two packs have temperature p.d.f.s
that are significantly different from normal distributions, namely P82 and Th200; they
yield a high degree of skewness.

These observations, and the fact that industrial propellants are most often poly-
dispersed (and so P82 and Th200 are not representative), lead us to the choice/
assumption that the fluctuations constitute a covariance stationary normal process,
one in which the covariance kernel is a function of time–space differences only,
and the distribution is multi-normal. The task of determining the joint probability
function of the process is thereby facilitated, since it is then completely determined
from knowledge of the process covariance matrix and the marginal distributions
means. The basic assumptions are:

(i) any linear combination of the random variables is normally distributed;
(ii) the covariance kernel K (equation (8)) is stationary in space and time.

Obviously each random variable is normally distributed; and the joint density of the
process is

g(y) =
exp

(
− 1

2
(y − µ)TK−1(y − µ)

)
(2π)np/2

√
|K |

(10)

where µ ∈ Rnp is the vector of the means. We remark that a normal distribution
for the marginal densities is a necessary but not sufficient condition for a random
vector field to form a normal process, i.e. for the joint probability function to be
multi-normal.

5.1. Spatial scales

The spatial scales of the fluctuations can be determined from the autocorrelation
coefficient. The autocorrelation for a continuous variable U (x, t) of a random field
statistically homogeneous over the domain D and the time interval T is evaluated as

ρ(h, k) =

∫
T

∫
D

u(x, t)u(x − h, t − k) dx dt∫
T

∫
D

dx dt

. (11)

Here, u is the fluctuation U −
∫

T
∫

D U dx dt/
∫

T
∫

D dx dt defined on an x, z planar
cut. Note that h is a vector; and the function U is periodic in the box D, truncated
outside T. The autocorrelation coefficient is ρ̃ = ρ/ρ(0, 0), the spatial autocorrelation
is ρ(h, 0), h ∈ D, and the time autocorrelation is ρ(0, k), k ∈ (−T, T).

The spatial autocorrelation coefficients for the normal velocity and temperature
are shown in figures 16 and 17. Close to the surface the coefficients drop sharply,
indicating that the fluctuations are only correlated over very small scales; they become
better organized as the distance from the surface increases. Above y =0.5 mm the
coefficients do not change a great deal, and above 1 mm they change minimally.

A characteristic dimension of the random field can be deduced from the curvature
of each autocorrelation function at the origin, analagous to the so-called microscale
(Tennekes & Lumley 1972). The velocity fluctuation microscale ΛV , for the five mor-
phologies, is shown in table 3 as a function of the normal distance y; it changes
between the surface and the plane y = 0.5 mm by one order of magnitude. When
the spatial scale of the fluctuations a millimetre or so from the surface is compared
to the scale of the chamber geometries we shall consider, table 4, it is evident
that they differ by 3 orders of magnitude. And an examination of the average
grid spacing in the streamwise direction, also shown in table 4, suggests that the
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Figure 16. Velocity autocorrelation coefficient as a function of the separation distance for
the five packs; the distance from the burning surface is: (a) y = 0, (b) y = 0.05237 cm,
(c) y =0.1019 cm, (d) y = 0.15 cm. Dotted line, Th20 50 200; dashed line, H200; solid line,
P82; line with dots, P82 390; circles= Th200.
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Figure 17. Temperature autocorrelation coefficient as a function of the separation distance
for the five packs; the distance from the burning surface is: (a) y = 0, (b) y = 0.05237 cm,
(c) y =0.1019 cm, (d) y = 0.15 cm. Dotted line, Th20 50 200; dashed line, H200; solid line,
P82; line with dots, P82 390; circles, Th200.

efflux variables evaluated at neighbouring mesh points are only weakly correlated,
and the fluctuations at distinct grid points can be treated as independent stochastic
processes.
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Pack y = 0 y = 5 × 10−2 y = 1 × 10−1 y = 1.5 × 10−1

H200 2.8 × 10−3 4.1 × 10−2 6.1 × 10−2 7.1 × 10−2

Th200 3.2 × 10−3 3.0 × 10−2 4.2 × 10−2 5.3 × 10−2

P82 1.8 × 10−3 3.1 × 10−2 4.3 × 10−2 6.1 × 10−2

P82 390 2.7 × 10−3 4.1 × 10−2 5.9 × 10−2 7.3 × 10−2

Th20 50 200 1.7 × 10−3 3.2 × 10−2 4.55 × 10−2 5.5 × 10−2

Table 3. Spatial microscale (cm) based on the fluctuation, ΛV , for different values of y (cm).

Case L (m) Lp/L H/L T/H ∆x (m) ṁ (kgm−2 s−1) Tinj (K)

Onera86 0.51 0.94 3.9 × 10−2 1 1.2 × 10−3 13.0 260.0
OneraC1 0.47 0.42 1.3 × 10−1 0.56 3.3 × 10−3 21.2 3387.0

Table 4. Summary of the chamber geometries considered. Both test cases assume two-
dimensional planar flow. L is the total length of the chamber, Lp is the length of the
propellant section, H is the height, T is the minimum height, ∆x is the streamwise grid spacing
at the surface, averaged over the propellant section; refer to figure 21 for a better explanation
of the geometry. ṁ and Tinj are the average mass flux and temperature over the propellant
section.

It does not follow, of course, that just because the correlation length is much
smaller than the mesh size these correlations have no effect on the turbulence field
in the chamber. Rather, these disparate numbers reveal a challenging issue in the
study of turbulence in injected flows. For the model rocket configurations that we shall
consider, the Kolmogorov scale is typically 10 µm, and so eddies of size 10–1000 µm are
subgrid. Large-eddy simulations (LES) can successfully account for the contribution
that these make to the field equations, but strategies to account for fluctuations at the
injection boundaries are not well established. Past rocket-flow simulations use LES
with white-noise fluctuations at these boundaries, thus uncorrelated both in space
and time, e.g. Wasisto & Moser (2005). The grid resolution study and comparisons
with DNS results and experimental data reported in Wasisto et al. (2004) provide
strong evidence that converged solutions can be obtained in this situation using LES.
But we cannot be sure that the subgrid forcing that we have identified does not
lead to an energy flow to larger scales, either because a significant component of
the disturbance ‘shape’ corresponds to eigenfunctions of unstable modes, or through
unknown nonlinear processes. This leaves us with two choices: to terminate our
discussion until such time as a strategy is developed for accurately including any
contribution that these disturbances might make; or to continue, to see if, when time
correlations are examined, results different from those generated by white noise are
obtained. We shall continue.

5.2. Time correlations and scales

In examining time correlations we focus on the y = 0.5 mm plane, because we choose
this as the boundary between the chamber and the propellant subdomains. Velocity
and temperature autocorrelations and the velocity–temperature correlation coefficient
are shown in figure 18. This information, multiplied by the standard deviations of
table 2, is fed into the normal process. The pack morphology has a strong effect
on the time correlations, stronger than on the spatial correlations, and large-sphere
packs such as Th200 yield a wider correlation curve than small-sphere ones such as
P82. However, it is not just the largest dimension that is important in determining
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Figure 18. Time correlations for the five morphologies; pack morphologies are the same
across the rows.

the shape of the curve, but also the overall distribution. Consider, for example, results
for the Th20 50 200 morphology, figure 18 (g). The curve comprises two segments,
the first typical of small-sphere packs, the second typical of large-sphere packs. This
behaviour can be explained by analysing the spectral densities and considering the
link between spectral density and time autocorrelation. We define scaled spectral
densities of the velocity and temperature fluctuations as

δ{v,T }(κ) =
F[{v, T }](κ)F∗[{v, T }](κ)

ρ(0, 0)
(12)

where F indicates the Fourier transform of the fluctuation u of a random variable
U for the truncated process of length T,

F[U ](κ) =
1

T

∫ t0+T

t0

exp(−i2πκz)u(z) dz. (13)

The spectral densities for the two state variables are shown in figure 19. The correlation
coefficient of figure 17 can easily be related to the spectral density:

ρ̃{v,T }(0, k) = 2T
∫ ∞

0

δ{v,T }(κ) cos(2πκh) dκ. (14)

Note that this equation remains an identity in the discrete sense when the spectral
density is defined using the discrete Fourier transform and a discrete sample average
is used to evaluate the autocorrelation. The particular shape of the velocity auto-
correlation function for Th20 50 200 is due to the large values associated with
high-frequency modes in the spectral density curve. These are indicative of a high
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Figure 19. Velocity and temperature spectral densities. Solid line: velocity fluctuation;
dashed line; temperature fluctuation. (a) P82, (b) Th20 50 200, (c) P82 390, (d) H200.

percentage of fine AP. When the large-frequency modes are weak, as in P82 390 for
which the fraction of fine AP is small, the autocorrelation curve is less steep.

The temperature autocorrelation curve for Th20 50 200 does not seem to be affected
by the presence of small oxidizer particles. Indeed, the fine AP cut appears to be of
little significance for the temperature fluctuation statistics of all packs, and this is
reflected by the temperature spectral density curves. Compare this with the velocity
spectral density curve for P82, for example, which displays a well-defined maximum.
Clearly, the velocity and temperature fluctuations are due, in part, to different
phenomena.

The fluctuations define a time scale, just as they define a length scale. This can be
determined from a quadratic approximation of the autocorrelation near the origin:

ρ̃{v,T }(0, k) = 1 − k2/λ2
{v,T } + O(k4). (15)

Thus

λ2
{v,T } =

∫ ∞

0

δ{v,T }(κ) dκ

2π2

∫ ∞

0

κ2δ{v,T }(κ) dκ

, (16)

and from this we conclude that the large-frequency Fourier components are important
in determining λ because of the factor κ2 in the denominator. The characteristic times
of the fluctuations are listed in table 5. Note that the velocity microscale differs
significantly from the temperature microscale for packs with high concentrations of
fine AP. For these morphologies, high-frequency oscillations contribute to reducing
the curvature radius at the origin for the velocity autocorrelation, but not for the
temperature.
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Pack λV (s) λT (s) rb (cm s−1) ṁ (g cm−2 s−1) Tf (K)

H200 2.1 × 10−3 2.5 × 10−3 0.65 1.08 2572
Th200 2.6 × 10−3 2.5 × 10−3 0.81 1.38 2888
P82 1.1 × 10−3 0.8 × 10−3 0.97 1.69 2962
P82 390 2.3 × 10−3 3.3 × 10−3 0.71 1.11 2756
Th20 50 200 1.4 × 10−3 2.1 × 10−3 0.86 1.40 2755

Table 5. Temporal microscale based on velocity (λV ) and temperature (λT ) fluctuations,
regression rates (rb), average mass flux (ṁ), average flame temperature (Tf ) for the five packs.
Pressure is 20 atm.

5.3. Implementation

Given a vector, X, of identically independently normally distributed variables with
zero mean and standard deviation equal to 1, a multinormal distribution with assigned
mean µ and covariance matrix K is obtained as

Y = H X + µ, H H T = K. (17)

The advantage of such a formulation is rooted in the fact that the covariance matrix
is symmetric positive definite. Therefore matrix factorization can be carried out using
a Cholesky decomposition, which yields a lower-triangular H matrix. Obviously, the
size of Y increases proportionally to the simulated time, and factoring the matrix
at each time step of a fluid simulation is an order n3

p operation. A property of the
Cholesky factorization is that any row of the triangular matrix is independent of rows
with greater index, so that at each time step only the rows associated with the current
time variables need to be evaluated, which requires order n2

p operations. Nonetheless,

in the computations reported below the number of time steps of around 10−7 s needed
to obtain a statistically accurate description of the flow solution is of the order of 107.
It is not possible therefore to retain all of the random variables in the time sequence.
When all the correlation coefficients become smaller than some threshold value, we
truncate the time sequence, effectively setting Kc,d = Kd,c = 0, where c marks the entry
to be computed and d marks the discarded one. In order to maintain continuity of
the process, for the truncated sequence we evaluate the components of the Y vector
at the current time iteration using a slightly different strategy from that described
above. We derive the conditional probability density for the truncated sequence at the
current time, Yc, given the knowledge of the efflux at np (only) previous times:

fc := fYc |Yc−np ,Yc−np+1,...,Yc−1
(yc|yc−np

, yc−np+1, . . . , yc−1)

=
1√

2πσ ∗
exp

{
−1

2

(
yc − µ∗

σ ∗

)2 }
. (18)

Equation (18) shows that Yc is normally distributed with mean

µ∗ = µ −
n−1∑
j=0

K−1
j,n

K−1
n,n

(xj − µj )

and standard deviation

σ∗ =
1√

K−1
n,n

.
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Figure 20. Spanwise vorticity colourmap for the Onera86 test case. The vorticity colormap
minimum, maximum value and step are (−5 × 104, 5 × 104, 5 × 103) sec−1 respectively.

The implementation of the normal process requires only the computation of
identically independently normally distributed numbers. The well-known Box–Muller
method is used for the generation of normal random variates (Box & Muller 1958).

6. Chamber-flow analysis
The physical domain is divided into two sub-domains. The propellant sub-domain

comprises the solid phase and the combustion layer, the region of fluid where
chemical reactions are important and the heat flow is large. The chamber sub-domain
is where the non-reacting Navier–Stokes equations apply. This division is one of the
foundations of our approach, and relies on a subgrid micron-scale model to determine
the fluctuations, and a fluid Navier–Stokes solver for a non-reactive mixture to analyse
the flow in the chamber. Earlier reports of the chamber-flow code that we use are
given in Wasistho & Moser (2005) and Wasistho et al. (2004); the latter carefully
examines accuracy and convergence questions. Unlike the combustion code, the fluids
code is compressible.

Another key ingredient is the assumption, noted earlier, that the fluctuation statistics
is dependent only on the propellant morphology and the chamber pressure, for
this allows us to describe the fluctuations independently of the chamber flow. As
a consequence of the decoupling, the propellant sub-system is simulated with a
zero-flux far-field boundary condition for the temperature and a zero-shear far-
field boundary condition for the momentum equations. Periodic boundary conditions
are applied to the propellant sub-domain in the directions perpendicular to the main
regression speed. As a consequence of the randomness of the packing and the absence
of boundary forcing, fluctuations measured on planes perpendicular to the mean
burning direction constitute a statistically homogeneous random field. The absence
of an external time scale makes the random field statistically homogeneous in time
as well. Also, because of the decoupling, the space–time-varying inflow in the fluid
sub-domain is treated as simple boundary forcing.

Two chamber geometries are considered, test beds used by others with the labels
Onera86 and OneraC1. All of our calculations are two-dimensional (planar), and
three propellants are examined, P82, Th20 50 200, and P82 390, corresponding to
weak forcing, medium forcing, and strong forcing.

Onera86 (Traianeau, Hervat & Kuentzmann 1986), is essentially a straight open-
ended tube (see figure 20) and has been widely used to study turbulence modelling
in porous wall geometries. The calculations are characterized by cold flow, although
there are both velocity and temperature fluctuations at the wall.
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Figure 21. Sketch of the chamber geometry used (see table 4). The shaded regions
represent the propellant.

OneraC1 has a geometry that more closely resembles an actual rocket chamber,
with a Laval nozzle preceded by a streamwise step which gives rise to shear layers
and vortex shedding (figure 21). It is a configuration that has been used in numerical
simulations at Onera (Lupoglazoff & Vuillot 1992) and here we report hot-flow
results. The parameters for both geometries are identified in table 4.

6.1. Scaling the fluctuations

The calculations of the chamber flow require the specification of data at each boundary
mesh point. The fluctuation data are independent of those at other mesh points
because, as we noted earlier, the spatial correlation lengths are an order of magnitude
smaller than the mesh size for the chamber.

At each boundary mesh point, one that corresponds to what we have called an inter-
mediate point, 0.5 mm above the propellant, it is necessary to impose a time sequence
of values of v and T where v is the normal velocity and T is the temperature. This time
sequence must match the statistics that we have calculated, and these are: the time
autocorrelations of v and T ; the time cross-correlations of v and T ; and the joint p.d.f.
of v and T . The span of the time sequence is large compared to the correlation times.

The sequence, averaged in time, defines both a mean equilibrium or flame tempera-
ture (and so a mean density), and a mean velocity (and so a mean mass flux). These
values are different for different propellants (when the mean pressure is fixed), and
different from the test-bed values defined in table 4. And so we scale the temperature
sequence for each propellant so that the time average of the mass flux is equal to
the test-bed value; and we scale the velocity sequence so that the time average of the
mass flux is equal to the test-bed value. To convert v to a mass flux requires a value
of the mean density, calculated from the equation of state with the local value of
pressure and a molecular weight of 34.

6.2. Results for Onera86

The root mean square (r.m.s.) of the velocity fluctuations, which is defined as the
standard deviation of pointwise fluctuation time sequences, is plotted against the
crosswise coordinate in figures 22 and 23 for different streamwise locations. The effect
of the morphology on the chamber flow fluctuations is significant in the streamwise
interval 0.150 m< x < 0.250 m where the core-flow normal velocity fluctuations are
much larger than the fluctuations at the wall, where the forcing takes place, meaning
that considerable growth has occurred. The effect of the forcing is evident in this
region where P82 390 yields the largest r.m.s. and P82 the smallest. In the aft region
of the rocket the three morphologies yield similar results, and the rms profiles are
dependent only upon the geometry and the mean boundary conditions.
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Figure 22. Axial velocity component root mean squares for the Onera86 chamber flow,
units m s−1: solid line, Th20 50 200; dashed line, P82 390; dash/dot line, P82.

6.3. Results for OneraC1

For this geometry, the vorticity contours at three evenly spaced times are shown in
figure 24. The periodic vortex shedding can be clearly seen by comparing panels
(a)–(c). We focus on the head-end pressure fluctuations and the shedding frequency.

The head-end pressure oscillation is a design variable whose value is minimized in
an optimal design; oscillations with magnitude a few fraction of percent of the mean
are considered large. For the OneraC1 case, when morphological fluctuations are
not considered, the head-end pressure oscillation is primarily due to vortex shedding.
The value of the shedding frequency is close to the second acoustic mode frequency
computed in Kouta (1999) as 2750 Hz.

When a real propellant is considered, the forcing associated with the morphology
induces head-end pressure fluctuations that are comparable in magnitude to those
caused by the periodic vortex shedding. The head-end pressure time traces for the three
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Figure 23. Normal velocity component root mean squares for the Onera86 chamber flow,
units m s−1: solid line, Th20 50 200; dashed line, P82 390; dash/dot line, P82.

packs and for the non-forced case are shown in figures 25 and 26, on a milliseconds
scale and on a seconds scale respectively. The fast oscillation, the one varying with a
frequency of the order of 1 ms, is due to the vortex shedding, the slow frequency is
due to the morphological forcing. Figure 27 compares the P82 390 results with those
obtained using white-noise fluctuations. The head-end pressure oscillation depends
strongly on the morphology. The addition of morphological fluctuations causes the
standard deviation of pressure oscillations to increase by a factor 1.7, table 6. The
strong forcing, P82 390, yields the largest standard deviation.

Figure 28 shows the results of figures 25 and 26 in the frequency domain. This
makes it clear that for these small rockets the shedding frequency is not changed by
the low-frequency fluctuations at the injection boundary, but the associated amplitude
is diminished by morphological scales in the efflux.

In evaluating these results, however, a word of caution. A planar simulation does
not consider randomness of the efflux in the spanwise direction, so that fluctuations



28 L. Massa, T. L. Jackson, J. Buckmaster and F. Najjar

(a)

(b)

(c)

Figure 24. Spanwise vorticity colourmap for the OneraC1 test case. Frames (a)–(c) are
separated by 1.3×10−4 s. Minimum, maximum value and step are (−5×104, 5×104, 5×103) s−1

respectively.
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Figure 25. Head-end pressure fluctuations for the OneraC1 rocket on a milliseconds scale.
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Figure 26. Head-end pressure fluctuations for the OneraC1 rocket on a seconds scale.
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Figure 27. Comparison of head-end pressure time traces for the OneraC1 rocket when the
efflux is defined by white noise or by P82 390 fluctuations; the processes have marginal p.d.f.s
with identical means and standard deviations.

of surface-integrated quantities are overestimated. For this reason we cannot assume
that the effects will be as large for a nominally axisymmetric (albeit three-dimensional)
configuration. We hope to examine such configurations in the future.
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Pack Shedding frequency
σ [Phead]

µ[Phead]
× 100

σ [ṁ]

µ[ṁ]
× 100

Cov[ṁPhead]

σ [ṁ]σ [Phead]

No fluctuations 2.54 × 103 0.5418 0 0
P82 2.54 × 103 0.5570 0.1 0.11
P82 390 2.54 × 103 0.9178 0.53 0.73
Th20 50 200 2.55 × 103 0.6500 0.62 0.40

Table 6. Results for the OneraC1 test case for three morphologies.
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Figure 28. Panels from figures 25 and 26 in the frequency domain; F ∗ is the second
axial mode frequency.

7. Concluding remarks
Our earlier work on heterogeneous propellant combustion (Massa et al. 2002, 2005)

is, we believe, the only fully coupled three-dimensional treatment of this problem,
and so the fluctuations above the propellant on the millimetre scale are described
here for the first time. It is self-evident that the size of the AP particles plays a
role in defining the spatial variations of these fluctuations, but we have found that
surface clustering of the AP can define significantly longer length scales. However,
for all but micro-rockets these will be much shorter than any relevant to, or that can
be accommodated by, the chamber-flow calculations. Whether or not these subgrid
scales can affect the chamber flow is an open question.
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The same cannot be said of the temporal fluctuations. The p.d.f.s of these are
approximately normally distributed, and the correlations affect the chamber flow,
most noticeably the head-end pressure. The usual way of accounting for injection
fluctuations is to model them using a white-noise process, but our calculations permit
the specification of more realistic data, and there are significant differences, as figure 21
makes clear.

The obvious concern that we have already identified in § 5 is that the chamber flows
we have calculated are all strictly two-dimensional, and so the question of whether
propellant morphology can affect head-end pressure fluctuations in real rockets is not
yet definitively answered. But that we obtain an effect within our restricted framework
encourages us to pursue the more difficult real problem.

This work was supported by the US Department of Energy through the University
of California under subcontract B341494, and by AFRL under contract FA9550-05-
1-0029 and contract FA9550-06-C-0078.
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